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Globally coupled systems with prescribed synchronized dynamics
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Abstract. A system of globally coupled maps whose synchronized dynamics differs from the individual
(chaotic) evolution is considered. For nonchaotic synchronized dynamics, the synchronized state becomes
stable at a critical coupling intensity lower than that of the fully chaotic case. Below such critical point, syn-
chronization is also stable in a set of finite intervals. Moreover, the system is shown to exhibit multistability,
so that even when the synchronized state is stable not all the initial conditions lead to synchronization of
the ensemble.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.45.-a Nonlinear dynamics and nonlinear
dynamical systems – 05.45.Pq Numerical simulations of chaotic models

Synchronization is a form of collective behavior fre-
quently found in complex natural systems within the
scopes of both physics and life sciences. This phenomenon
has been observed in physico-chemical reactions [1], elec-
tronic circuits [2], neural systems [3], and social behav-
ior [4], among other. Synchronized dynamics, which is
characterized by the coherent evolution of the elements
in an interacting ensemble, seems to be typical of systems
with long-range interactions [5]. As a matter of fact, a
standard model for synchronization in complex dynamical
systems is given by a set of N globally coupled maps [6],

xi(t+ 1) = (1− ε)f [xi(t)] +
ε

N

N∑
j=1

f [xj(t)] (1)

(i = 1, . . . , N), where the interaction does not depend at
all on the distance between elements. Here, ε measures
the strength of coupling (0 ≤ ε ≤ 1), and f(x) defines
the individual dynamics of each element. For ε = 0 the
elements evolve independently of each other. On the other
hand, for ε = 1 the system is fully synchronized after the
first time step. All the elements collapse into a single point
cluster. The synchronized state, where the orbits xi(t) of
all elements are identical, is stable when (1 − ε) expλ <
1, where λ is the largest Lyapunov exponent of the map
defined by f(x). For a chaotic map (λ > 0) there exists a
critical value of the coupling intensity, 0 < εc < 1, above
which synchronization is stable [6]. For a nonchaotic map
(λ < 0) the ensemble synchronizes for any ε > 0.
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In model (1), when the ensemble becomes synchronized
the dynamics of the collapsed cluster reproduces exactly
that of a single, independent element. However, in sev-
eral real instances of synchronized behavior – notably, in
pathological neurological states – synchronization is ac-
companied by a qualitative change in the global dynamics
of the system. During epileptic episodes, in fact, the coher-
ent activity of vast zones of the cerebral cortex is almost
periodic, strongly contrasting with the seemingly chaotic
patterns of normal brain function [7]. In insect societies,
collective dynamics can be qualitatively different from in-
dividual motion [8]. Swarms evolve in a wide variety of
forms which does not reflect diversity in the elementary
behavior, but rather in the interaction between individ-
uals. Finally, in the engineering of coupled automata de-
signed to perform specific tasks, the expected ensemble
evolution is typically more complex than the individual
dynamics. It is therefore relevant to consider ensembles
of coupled dynamical elements able to exhibit coherent
behavior, but such that the synchronized dynamics differs
from that of the individuals. In the following, a generaliza-
tion of equation (1) with the above property is considered.
For sufficiently strong coupling, the ensemble collapses to
a synchronized state with prescribed evolution, which is in
general different from the individual behavior. The transi-
tion between both regimes is studied and some significant
differences with the usual model (1) are pointed out.

Consider the following set of globally coupled maps:

xi(t+ 1) = (1− ε)f1[xi(t)] +
ε

N

N∑
j=1

f2[xj(t)] (2)

(i = 1, . . . , N). Here, as in equation (1), ε measures the
strength of coupling. For ε = 0 the evolution of each
element is governed by its individual dynamics, which
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is prescribed by the function f1(x), i.e. x(t+1) = f1[x(t)].
For ε = 1, instead, all the elements collapse at the first
time step into a single point cluster, whose trajectory is
governed by the function f2(x), i.e. x(t+1) = f2[x(t)]. For
intermediate values of the coupling intensity, as ε grows, it
is expected that the ensemble dynamics gradually replaces
the individual evolution. In particular, there should exist
a value ε0 of the coupling intensity such that for ε > ε0
the synchronized state is stable.

It is clear from equation (2) that if for a given value of ε
the system is synchronized, the evolution of the collapsed
ensemble will be governed by the map

x(t + 1) = F[x(t)] = (1− ε)f1[x(t)] + εf2[x(t)]. (3)

It could be expected that the dynamics defined by this
map is somehow intermediate between the dynamics de-
fined by f1 and f2. However, since these two functions
are in general nonlinear, the behavior of the map given
by their linear combination can be qualitatively different
from that of the single maps. A suitable illustration of
this fact, which will be useful in what follows, is provided
by the (one-dimensional) logistic map [9]. Taking fk(x) =
rkx(1− x) (k = 1, 2), one has F (x) = rx(1− x), i.e. a lo-
gistic map with a modified parameter r = (1− ε)r1 + εr2.
For given ε, r1 and r2 can be chosen in such a way that,
for instance, f1 and f2 produce regular evolution but F
produces chaotic dynamics, or vice versa.

The onset of synchronization can be readily studied
from linearization of equation (2) around the orbits of
map (3). It turns out that the condition for stability of
the synchronized state can be written as

(1− ε) expΛ < 1. (4)

Here, Λ is the largest Lyapunov exponent of the map
defined by f1(x), but calculated along the orbit given by
map (3). For instance, for one-dimensional maps, Λ is be
given by [9]

Λ = lim
T→∞

1
T

T∑
t=0

ln |f ′1[x(t)]| , (5)

with x(t+1) = (1−ε)f1[x(t)]+εf2[x(t)]. The value of Λ re-
sults thus from a sampling of the Jacobian of f1 along the
orbits of F. If f1 defines a nonchaotic map, it is most likely
that Λ will be negative, and equation (4) will be satisfied
for any ε > 0. As confirmed by numerical simulations, the
ensemble becomes synchronized for arbitrarily small cou-
pling intensities. Therefore, the specific cases considered
below correspond to chaotic individual dynamics.

It is clear from equation (5) thatΛ depends on ε, gener-
ally, in a complicated manner. Thus, the critical coupling
intensity εc at which synchronization becomes stable is in
general a complex function of Λ and can only be given
implicitly, as

εc = 1− exp[−Λ(εc)]. (6)

As shown numerically in the following example, this im-
plicit equation can have many roots.
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Fig. 1. (a) Numerical measurement of the quantity (1 −
ε) expΛ defined in equation (4) as a function of ε, for the case
f1(x) = r1x(1−x) and f2(x) = r2x(1−x) with r1 = 4 and r2 =
2.8. (b) Bifurcation diagram of F (x) = (1− ε)f1(x) + εf2(x).

Figure 1a shows numerical measurements of the quan-
tity (1 − ε) expΛ(ε) as a function of the coupling inten-
sity for the case of two logistic maps quoted above, with
r1 = 4 [10] and r2 = 2.8. For these values of the parame-
ters the individual dynamics (ε = 0) is chaotic whereas
the fully coupled dynamics (ε = 1) has a fixed point
at x ≈ 0.64. According to equation (4), for the values
of ε where the graph is below the dashed horizontal line
the state of full synchronization is linearly stable. In the
present example, for small values of the coupling intensity
(ε <̃ 0.3), this occurs in an irregular series of intervals.
Figure 1b, where the bifurcation diagram of the map F (x)
has been plotted, reveals that these intervals correspond
to the periodicity windows of the synchronized dynamics.
Within these intervals, thus, the (stable) collapsed ensem-
ble evolves along a periodic orbit. The well-known struc-
ture of periodicity windows in the logistic map suggests
that such intervals could be infinitely many in number.

For ε > ε0 ≈ 0.292, the quantity (1− ε) expΛ(ε) is al-
ways less than unity and the synchronized state is linearly
stable. Note however that near ε0 the dynamics of the col-
lapsed ensemble can still be chaotic. In fact, F (x) does
not reach a definitive regime of periodic behavior up to
ε ≈ 0.35. The coupling intensity ε0 at which the synchro-
nized state becomes definitively stable is to be compared
with the corresponding critical coupling intensity of sys-
tem (1). With f(x) = f1(x), synchronization is stable for
ε > 0.5. Meanwhile, for f(x) = f2(x) the synchronized
state is stable for any ε > 0, because the individual dy-
namics is nonchaotic. Therefore, the combination of the
chaotic individual dynamics given by f1 with the regular
ensemble dynamics given by f2 produces a sensible lower-
ing of the critical point at which synchronization becomes
stable. The appearance of stability windows as described
above is an additional byproduct of this combination, not
present in the usual case, equation (1).
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Fig. 2. Synchronization frequency Ω of the asymptotic modes
m = 0, . . . , 3 in a one-dimensional ensemble of N = 100 glob-
ally coupled oscillators with periodic boundary conditions, as
a function of the nearest-neighbour delay time τ0.

A possible candidate to play the role of an order pa-
rameter in the transition to synchronization is the mean
distance between the elements in the ensemble [11],

d =

〈
2

N(N − 1)

∑
i

∑
j<i

|xi(t)− xj(t)|
〉
, (7)

where | · | is a suitable distance in x-space and 〈·〉 indicates
average over time and realizations. The mean distance d
is in general a nonnegative quantity which should vanish
in the synchronized state. Figure 2 (full line) displays nu-
merical results for d as a function of ε in an ensemble of
N = 103 logistic maps coupled as in the example consid-
ered in Figure 1. For each value of ε, the initial condition
was prepared letting the elements evolve independently of
each other during 103 time steps and starting from ran-
dom states, but governed by the map F (x). In such a way,
the elements became distributed according to the invari-
ant measure defined by F (x). Then, coupling was switched
on, and the interacting ensemble was left to evolve for 104

steps. The mean distance was calculated by averaging over
the subsequent 102 steps. Additionally, d was averaged
over 102 realizations of the whole process.

Surprisingly enough, it is observed that d does not van-
ish in the periodicity windows where synchronization is
supposed to be stable (cf. Fig. 1). Furthermore, for larger
coupling intensities, the point at which the mean distance
reaches d = 0, ε ≈ 0.33, is well beyond ε0. These facts
can in principle be ascribed to two effects. In the first
place, it could be that 104 steps are insufficient to reach
the synchronized state from certain initial conditions. In
fact, very long transients (∼ 106 steps) have recently been
reported for selected values of the relevant parameters in
globally coupled chaotic maps [12]. Secondly, some of the
chosen initial conditions could not belong to the attraction
basin of the synchronized state, their orbits converging to

other attractors. In this case, the system of coupled maps
would exhibit multistability properties.

In order to test these possibilities, the orbits of some
selected initial conditions within the largest periodicity
window (ε = 0.14), and for coupling intensities just above
the critical value ε0 (ε = 0.3) have been analyzed in detail
up to much longer times (∼ 107 steps). It turns out that
both situations can occur. In the periodicity window the
orbits are apparently chaotic. However, in all the realiza-
tions it was observed that for sufficiently long times (106

to 107 steps) the ensemble is finally attracted to the syn-
chronized state. In this case, thus, the fact that the mean
distance in Figure 2 does not vanish within the periodicity
window is due to an artifact of the numerical procedure.

On the other hand, for ε = 0.3 it is found that the
system converges typically to a state where the ensemble
separates into two clusters, each of them moving in
a period-2 orbit. This two-cluster regime corresponds
actually to a multitude of states, since it happens that
the number of elements in each cluster can vary between
realizations – though it is usually near N/2. As a matter
of fact, the existence of period-2 two-cluster states for
the ensemble of coupled logistic maps can be analytically
proven, by studying the solutions x1, ..., x4 to the following
equations:

x1 = (1− ε)f1(x2) + ε[pf2(x2) + (1− p)f2(x4)]
x2 = (1− ε)f1(x1) + ε[pf2(x1) + (1− p)f2(x3)]
x3 = (1− ε)f1(x4) + ε[pf2(x2) + (1− p)f2(x4)]
x4 = (1− ε)f1(x3) + ε[pf2(x1) + (1− p)f2(x3)].

(8)

Here, x1 and x2 are the successive states of a cluster
with pN elements, and x3 and x4 are the states of the
other cluster, with the remaining (1 − p)N elements. For
p = 1/2, for instance, these equations can be explicitly
solved:

x1,2 = x4,3 =
1
2

[
1 +

1
(1− ε)r1

]
± 1

2

√[
1 +

1
(1− ε)r1

] [
1− 2

r
− 1

(1− ε)r1

]
. (9)

For the values of r1 and r2 considered above, this solution
exists for ε <̃0.4. The stability of the two-cluster states ob-
served in the simulations has been confirmed numerically,
by applying small random perturbations to the individual
elements.

Consequently, for certain values of the coupling inten-
sity the system is multistable. The synchronization state
thus competes with other stable states as an attractor of
the ensemble. This can be illustrated by new measure-
ments of the mean distance d between elements, from dif-
ferent initial conditions. Now the initial condition is pre-
pared by considering first a single element x(t) governed
by the map F (x). This element is left to evolve for 103

steps from a random initial condition, such that its final
state xF belongs to the attractor of the map. Then, the
initial states of the elements in the ensemble are chosen
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Fig. 3. Bifuraction diagram of a single element in an ensem-
ble of 103 coupled logistic maps, as a function of the coupling
intensity ε. (a) Initial conditions distributed according the in-
variant measure of F (x). (b) Clustered initial conditions.

with uniform probability in the interval (xF − δ, xF + δ)
with δ = 10−3. This clustered initial condition should
favor the convergence to the synchronized state. Indeed,
the dashed line in Figure 2 shows that the mean distance
vanishes now in the periodicity windows and for ε > ε0,
as expected.

Multistability implies that the present system is non-
ergodic. In particular, the definition of an order parameter
for characterizing the transition to synchronization should
not mix averages over time and over realizations, since
they are not equivalent. In this sense, the mean distance
d of equation (7) is not a proper order parameter. More-
over, there is generally no well-defined invariant measure
associated with the system. A suitable illustration of this
fact is provided by the bifurcation diagrams of a single
element in the ensemble calculated using the two kinds of
initial conditions considered above (Fig. 3). Differences in
the distribution of states are apparent for ε < ε0.

In order to test whether these results are characteristic
for other choices of the individual and ensemble dynamics,
the case of the (two-dimensional) Hénon map [9],

[x(t + 1), y(t+ 1)] = f [x(t), y(t)]
= [y(t) + 1− ax(t)2, bx(t)], (10)

has also been studied. For a = a1 = 1.4 and b = 0.3 this
map is well-known to exhibit chaotic behavior. If intro-
duced in the usual globally coupled model (1), the syn-
chronization threshold is at ε0 ≈ 0.32. Meanwhile, for
a = a2 = 0.3 and the same value of b the Hénon map
has a fixed point at (x, y) = (1, 0.3), so that a globally
coupled ensemble of such maps would synchronize for any
ε > 0. Taking now the functions f1 and f2 in equation (2)
as the Hénon map with the above quoted values a1 and a2

of the nonlinear parameter a respectively, numerical sim-
ulations show that the same features observed for the case
of the logistic maps occur here. Namely, the critical cou-
pling intensity drops to ε0 ≈ 0.29, wide stability windows
are found for ε < ε0, and nonsynchronized stable states –
typically, clustered states with periodic orbits – exist well
beyond ε0. In this case, in fact, this kind of states can be
observed up to ε ≈ 0.5.

It is therefore reasonable to conjecture that the fol-
lowing three properties are typical for globally coupled
maps where the individual dynamics, governed by f1(x),
is chaotic, and the ensemble dynamics, governed by f2(x),
is periodic. (i) As a consequence of the competition be-
tween the two dynamical regimes, the critical coupling
intensity from which the synchronized state is always sta-
ble decreases with respect to the case where both regimes
are chaotic, i.e. equation (1) with f ≡ f1. (ii) Below
such critical point, a (probably infinite) set of finite in-
tervals exists where synchronization is stable. These in-
tervals correspond to the periodicity windows of the map
F(x) = (1− ε)f1(x) + εf2(x), which governs the dynamics
of the synchronized state. (iii) In wide ranges of coupling
intensities, including zones where synchronization is sta-
ble, the system displays multistability. States formed by
clusters with periodic orbits are observed, and can be an-
alytically predicted. In such zones, thus, not all the initial
conditions evolve towards synchronization.

Finally, it is worthwhile to consider the extension of
the present model to the case of time-continuous systems.
Global coupling in an ensemble of elements whose individ-
ual dynamics is governed by the set of differential equa-
tions ẋ = f(x) is usually introduced as [13]

ẋi = f(xi) + ε(x̄− xi). (11)

In this so-called vector coupling, x̄ = N−1
∑
j xj and ε

is again the coupling intensity. Synchronization is stable
for ε > λ, where λ is the largest Lyapunov exponent of
the individual dynamics. For this model, unfortunately,
it is not at all evident how to introduce a synchronized
dynamics different from the individual evolution. This
is however not the case in the generalization of vector
coupling proposed in [11], where coupling between time-
continuous systems has been introduced as

ẋi = f(xi) + εÂ(x̄− xi) + ε′[f(x̄)− f(xi)]. (12)

Here, ε and ε′ measure coupling, whereas Â is a matrix
whose eigenvalues are positive or have positive real parts.
Vector coupling is recovered for ε′ = 0 and Â = Î,
the identity matrix. It can be analytically shown [11]
that, for ε′ = 1, the synchronized state is in this case
globally stable. Equation (12) can be immediately gener-
alized to introduce a prescribed synchronized dynamics, as

ẋi = f1(xi) + εÂ(x̄− xi) + ε′[f2(x̄)− f1(xi)]. (13)

If the ensemble is synchronized, its trajectory is governed
by ẋ = F(x) = (1− ε′)f1(x) + ε′f2(x), in complete corre-
spondence with (3). For ε′ = 1 the synchronized evolution
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is fully defined by f2, and it can be proven that such state
is globally stable. The details of the transition to synchro-
nization in this time-continuous case deserve a separate
presentation.
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